Processing math: 100%
МатБюро Теория вероятностей Выбор формулы по комбинаторике. Схема и примеры

Основные формулы комбинаторики

Учитесь решать задачи по комбинаторике? На самом начальном этапе нужно изучить основные формулы комбинаторики: сочетания, размещения, перестановки (смотрите подробнее ниже) и научиться их применять для решения задач.

Как выбрать формулу комбинаторики?

выбор формулы комбинаторики

Мы подготовили для вас наглядную схему с примерами решений по каждой формуле комбинаторики:

  • алгоритм выбора формулы (сочетания, перестановки, размещения с повторениями и без),
  • рекомендации по изучению комбинаторики,
  • 6 задач с решениями и комментариями на каждую формулу.


Нужна помощь в решении задач по комбинаторике?

Перестановки

формулы комбинаторики

Пусть имеется n различных объектов.
Будем переставлять их всеми возможными способами (число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно

перестановки, формулы комбинаторики Pn=n!=123...(n1)n

Символ n! называется факториалом и обозначает произведение всех целых чисел от 1 до n. По определению, считают, что 0!=1,1!=1.

Пример всех перестановок из n=3 объектов (различных фигур) - на картинке справа. Согласно формуле, их должно быть ровно P3=3!=123=6, так и получается.

С ростом числа объектов количество перестановок очень быстро растет и изображать их наглядно становится затруднительно. Например, число перестановок из 10 предметов - уже 3628800 (больше 3 миллионов!).

Еще: онлайн калькулятор перестановок.

Размещения

размещения, формулы комбинаторики

Пусть имеется n различных объектов.
Будем выбирать из них m объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из n объектов по m, а их число равно

Amn=n!(nm)!=n(n1)...(nm+1)

Пример всех размещений из n=3 объектов (различных фигур) по m=2 - на картинке справа. Согласно формуле, их должно быть ровно A23=3(32+1)=32=6.

Вычисляем на лету: онлайн калькулятор размещений.

Сочетания

сочетания, формулы комбинаторики

Пусть имеется n различных объектов.
Будем выбирать из них m объектов все возможными способами (то есть меняется состав выбранных объектов, но порядок не важен). Получившиеся комбинации называются сочетаниями из n объектов по m, а их число равно

Cmn=n!(nm)!m!

Пример всех сочетаний из n=3 объектов (различных фигур) по m=2 - на картинке справа. Согласно формуле, их должно быть ровно C23=3!(32)!2!=3. Ясно, что сочетаний всегда меньше чем размещений (так как при размещениях порядок важен, а для сочетаний - нет), причем именно в m! раз, то есть верна формула связи:

Amn=CmnPm.

Удобный и бесплатный онлайн калькулятор сочетаний.

Решебник задач по комбинаторике


Изучаем комбинаторику: полезные ссылки