Processing math: 100%

Примеры решений: кривые второго порядка

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые второго порядка: приведение к каноническому виду, нахождение характеристик, построение графика т.п.

См. также: Решения по аналитической геометрии на плоскости,
Решения задач с квадратичными формами

Кривые 2-го порядка: решения онлайн

Задача 1. Привести к каноническому виду уравнение кривой 2 порядка, найти все ее параметры, построить кривую.

9x24y290x8y+185=0.
Решение (гипербола)

Задача 2. Дана кривая. Привести к каноническому виду. Построить и определить вид кривой.

6x2+25xy+2y2=21.
Решение (эллипс)

Задача 3. Выяснить вид кривой по общему уравнению, найти её параметры и положение в системе координат. Сделать рисунок.

3x26y212x108y492=0.
Решение задачи (гипербола)

Задача 4. Общее уравнение кривой второго порядка привести к каноническому. Найти координаты центра, координаты вершин и фокусов. Написать уравнения асимптот и директрис. Построить линии на графики, отметить точки.

9x2+25y218x100y116=0.
Решение задачи (эллипс)

Задача 5. Дана кривая y2+6x+6y+15=0.
1. Докажите, что данная кривая – парабола.
2. Найдите координаты ее вершины.
3. Найдите значения ее параметра р.
4. Запишите уравнение ее оси симметрии.
5. Постройте данную параболу.

Исследование параболы

Задача 6. Дана кривая 5x2+5y2+6xy16x16y=16.
1. Докажите, что эта кривая – эллипс.
2. Найдите координаты центра его симметрии.
3. Найдите его большую и малую полуоси.
4. Запишите уравнение фокальной оси.
5. Постройте данную кривую.

Исследование эллипса

Задача 7. Найти уравнения параболы и её директрисы, если известно, что парабола имеет вершину в начале координат и симметрична относительно оси Ox и что точка пересечения прямых y=x и x+y2=0 лежит на параболе.

Задача о параболе

Задача 8. Составить уравнение кривой, для каждой точки которой отношение расстояния до точки F(0;10) к расстоянию до прямой x=4 равно 2/5. Привести это уравнение к каноническому виду и определить тип кривой.

Решение о кривой 2 порядка

Задача 9. Даны уравнения асимптот гиперболы y=±5x/12 и координаты точки M(24,5), лежащей на гиперболе. Составить уравнение гиперболы.

Составление уравнения гиперболы

Задача 10. Даны уравнение параболы y=1/4x2+1 и точка C(0;2), которая является центром окружности. Радиус окружности r=5.
Требуется найти
1) точки пересечения параболы с окружностью
2) составить уравнение касательной и нормали к параболе в точках её пересечения с окружностью
3) найти острые углы, образуемые кривыми в точках пересечения. Чертёж.

Взаимное расположение параболы и окружности


Не получаются задачи? Решим быстро и подробно!