Processing math: 100%
МатБюро Статьи по теории вероятностей Как найти математическое ожидание?

Как найти математическое ожидание?

Математическое ожидание случайной величины X (обозначается M(X) или реже E(X)) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание - это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины - срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).


Нужна помощь? Решаем теорию вероятностей на отлично
Полезная страница? Сохрани или расскажи друзьям

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений xi , которые принимает СВ Х, на соответствующие вероятности pi: M(X)=ni=1xipi.

Для непрерывной случайной величины (заданной плотностью вероятностей f(x)), формула вычисления математического ожидания Х выглядит следующим образом: M(X)=+f(x)xdx.

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом: xi1251020pi0.10.20.30.30.1

Используем формулу для м.о. дискретной случайной величины: M(X)=ni=1xipi.

Получаем: M(X)=ni=1xipi=10.1+20.2+50.3+100.3+200.1=6.8.
Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью f(x)=12(x2x3) при x(0,1) и f(x)=0 в остальных точках.

Используем для нахождения мат. ожидания формулу: M(X)=+f(x)xdx.

Подставляем из условия плотность вероятности и вычисляем значение интеграла: M(X)=+f(x)xdx=1012(x2x3)xdx=1012(x3x4)dx==(3x4125x5)|10=3125=35=0.6.

Другие задачи с решениями по ТВ


Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений xi и соответствующих вероятностей pi (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку "Вычислить".
  • Калькулятор покажет вычисленное математическое ожидание M(X).
K=
xi
pi



Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Спасибо за ваши закладки и рекомендации


Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей - онлайн учебник по терверу. Для закрепления материала - еще примеры решений по теории вероятностей.


А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро: